Classification of Polarimetric SAR Images Based on Optimum SVMs Classifier Using Bees Algorithm

نویسندگان

  • Farhad Samadzadegan
  • Elahe Ferdosi
چکیده

Because of Polarimetric Synthetic Aperture Radar (PolSAR) contains the different features which relate to the physical properties of the terrain in unique ways, polarimetric imagery provides an efficient tool for the classification of the complex geographical areas. Support Vector Machines (SVMs) are particularly attractive in the remote sensing field due to their ability to handle the nonlinear classifier problem in high dimensional feature space. However, they also suffer from optimum SVMs parameters assignment and optimum feature subset selection issues that can significantly affect on the obtained results. In optimization of SVMs parameters and feature space, traditional optimization algorithms usually trap in local optimum. Thus, it is inevitable to apply metaheuristic optimization algorithms to obtain global optimum solution. As results, the superior performance of SVMs achieved by simultaneously optimization of SVMs parameters and input feature subset on Polarimetric imagery are demonstrated. Keywords—Polarimetric Image, Support Vector Machines (SVMs), Feature Selection, Model Selection, Bees Algorithm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimum Ensemble Classification for Fully Polarimetric SAR Data Using Global-Local Classification Approach

In this paper, a proposed ensemble classification for fully polarimetric synthetic aperture radar (PolSAR) data using a global-local classification approach is presented. In the first step, to perform the global classification, the training feature space is divided into a specified number of clusters. In the next step to carry out the local classification over each of these clusters, which cont...

متن کامل

Change Detection in Urban Area Using Decision Level Fusion of Change Maps Extracted from Optic and SAR Images

The last few decades witnessed high urban growth rates in many countries. Urban growth can be mapped and measured by using remote sensing data and techniques along with several statistical measures. The purpose of this research is to detect the urban change that is used for urban planning. Change detection using remote sensing images can be classified into three methods: algebra-based, transfor...

متن کامل

Classification of polarimetric radar images based on SVM and BGSA

Classification of land cover is one of the most important applications of radar polarimetry images. The purpose of image classification is to classify image pixels into different classes based on vector properties of the extractor. Radar imaging systems provide useful information about ground cover by using a wide range of electromagnetic waves to image the Earthchr('39')s surface. The purpose ...

متن کامل

Microwave Imaging Using SAR

Polarimetric Synthetic Aperture Radar (Pol.-SAR) allows us to implement the recognition and classification of radar targets. This article investigates the arrangement of scatterers by SAR data and proposes a new Look-up Table of Region (LTR). This look-up table is based on the combination of (entropy H/Anisotropy A) and (Anisotropy A/scattering mechanism α), which has not been reported up now. ...

متن کامل

Land Cover Identification Using Polarimetric Sar Images

Synthetic Aperture Radar (SAR) has been proven to be a powerful earth observation tool. Due to its sensitivity to vegetation, its orientations and various land-covers, SAR polarimetry has the potential to become a principle mean for crop and land-cover classification. A variety of polarimetric classification algorithms have been proposed in the literature for segmentation and/or classification ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012